April 19, 2024

Ferrum College : Iron Blade Online

Complete Canadian News World

Mars wheel control algorithms gain momentum

Mars wheel control algorithms gain momentum

Picture the scene: You’re driving around in your car when, at least an hour from the nearest help center, one of your tires starts losing air. do not worry! You have a spare tire with the tools and knowledge to change it. And if this fails, you can contact the roadside assistance service. But what if your car is not a car, has alloy wheels for which no spare parts are available, and the nearest help is 200 million miles away? You may be the JPL engineer on the Curiosity Mars Rover mission, which in 2017 was tasked with creating New driving algorithm designed to extend wheel life.

High performance rock crawler, courtesy Spidertrax.com license: CC BY 3.0

You could say the Curiosity Mars is the perfect off-road vehicle, and as such it has to handle conditions that are in some ways no different than some locations here on Earth. Ground-restricted rock crawlers use long travel suspensions, specialized drivetrains, and a locking differential to keep tires on the ground and prevent loss of traction.

On Mars, the landscape is dominated by sand and rocks, and the rover has to navigate around the worst of it. It’s inevitable, just like any terrestrial off-road vehicle, that Mars rovers will spin a tire now and then when they lose traction. The Mars rover also has a specialized propulsion system and long-distance suspension system. However, it does not use differentials, so how can it prevent the loss of traction and harmful wheel rotation that ensues? This is where the traction control algorithm mentioned above comes in.

See also  Russian engineers assess leakage from Soyuz crew spacecraft - Spaceflight Now

By controlling wheel spin with less traction, they can still contribute to vehicle movement while avoiding rocky rash. Make sure to check out Excellent article on JPL For a full explanation of their methodology and the added benefits of downloading new algorithms to control traction from a distance of 200 million miles! There is no doubt that the persistent rover on Mars has also benefited from this research.

But why should NASA have all the fun? You can join them by 3D printing of your Mars rover And maybe some Power wheels derive traction control. What a pleasure!